1,646 research outputs found

    Kinetic Theory of Flocking: Derivation of Hydrodynamic Equations

    Full text link
    It is shown how to explicitly coarse-grain the microscopic dynamics of the Vicsek model for self-propelled agents. The macroscopic transport equations are derived by means of an Enskog-type kinetic theory. Expressions for all transport coefficients at large particle speed are given. The phase transition from a disordered to a flocking state is studied numerically and analytically.Comment: 4 pages, 1 figur

    Computational study of the thermal conductivity in defective carbon nanostructures

    Full text link
    We use non-equilibrium molecular dynamics simulations to study the adverse role of defects including isotopic impurities on the thermal conductivity of carbon nanotubes, graphene and graphene nanoribbons. We find that even in structurally perfect nanotubes and graphene, isotopic impurities reduce thermal conductivity by up to one half by decreasing the phonon mean free path. An even larger thermal conductivity reduction, with the same physical origin, occurs in presence of structural defects including vacancies and edges in narrow graphene nanoribbons. Our calculations reconcile results of former studies, which differed by up to an order of magnitude, by identifying limitations of various computational approaches

    Configurational temperatures and interactions in charge-stabilized colloid

    Full text link
    We demonstrate that the configurational temperature formalism can be derived from the classical hypervirial theorem, and introduce a hierarchy of hyperconfigurational temperature definitions, which are particularly well suited for experimental studies. We then use these analytical tools to probe the electrostatic interactions in monolayers of charge-stabilized colloidal spheres confined by parallel glass surfaces. The configurational and hyperconfigurational temperatures, together with a novel thermodynamic sum rule, provide previously lacking self-consistency tests for interaction measurements based on digital video microscopy, and thereby cast new light on controversial reports of confinement-induced like-charge attractions. We further introduce a new method for measuring the pair potential directly that uses consistency of the configurational and hyperconfigurational temperatures as a set of constraints for a model-free search.Comment: 15 pages, 12 figures, submitted to J. Chem. Phy

    Calculations of canonical averages from the grand canonical ensemble

    Full text link
    Grand canonical and canonical ensembles become equivalent in the thermodynamic limit, but when the system size is finite the results obtained in the two ensembles deviate from each other. In many important cases, the canonical ensemble provides an appropriate physical description but it is often much easier to perform the calculations in the corresponding grand canonical ensemble. We present a method to compute averages in canonical ensemble based on calculations of the expectation values in grand canonical ensemble. The number of particles, which is fixed in the canonical ensemble, is not necessarily the same as the average number of particles in the grand canonical ensemble

    A Simple Three-Parameter Model Potential For Diatomic Systems: From Weakly and Strongly Bound Molecules to Metastable Molecular Ions

    Full text link
    Based on a simplest molecular orbital theory of H2+_{2}^{+}, a three-parameter model potential function is proposed to describe ground-state diatomic systems with closed-shell and/or S-type valence-shell constituents over a significantly wide range of internuclear distances. More than 200 weakly and strongly bound diatomics have been studied, including neutral and singly-charged diatomics (e.g., H2_{2}, Li2_{2}, LiH, Cd2_{2}, Na2+_{2}^{+}, and RbH−^{-}), long-range bound diatomics (e.g., NaAr, CdNe, He2_{2}, CaHe, SrHe, and BaHe), metastable molecular dications (e.g., BeH++^{++}, AlH++^{++}, Mg2++_{2}^{++}, and LiBa++^{++}), and molecular trications (e.g., YHe+++^{+++} and ScHe+++^{+++}).Comment: 5 pages, 4 figures, accepted by Physical Review Letter

    Ionic Capillary Evaporation in Weakly Charged Nanopores

    Full text link
    Using a variational field theory, we show that an electrolyte confined to a neutral cylindrical nanopore traversing a low dielectric membrane exhibits a first-order ionic liquid-vapor pseudo-phase-transition from an ionic-penetration "liquid" phase to an ionic-exclusion "vapor" phase, controlled by nanopore-modified ionic correlations and dielectric repulsion. For weakly charged nanopores, this pseudotransition survives and may shed light on the mechanism behind the rapid switching of nanopore conductivity observed in experiments.Comment: This version is accepted for publication in PR

    Dynamics of a Rigid Rod in a Glassy Medium

    Full text link
    We present simulations of the motion of a single rigid rod in a disordered static 2d-array of disk-like obstacles. The rotational, DRD_{\rm R}, and center-of-mass translational, DCMD_{\rm CM}, diffusion constants are calculated for a wide range of rod length LL and density of obstacles ρ\rho. It is found that DCMD_{\rm CM} follows the behavior predicted by kinetic theory for a hard disk with an effective radius R(L)R(L). A dynamic crossover is observed in DRD_{\rm R} for LL comparable to the typical distance between neighboring obstacles dnnd_{\rm nn}. Using arguments from kinetic theory and reptation, we rationalize the scaling laws, dynamic exponents, and prefactors observed for DRD_{\rm R}. In analogy with the enhanced translational diffusion observed in deeply supercooled liquids, the Stokes-Einstein-Debye relation is violated for L>0.6dnnL > 0.6d_{\rm nn}.Comment: 8 pages, 4 figures. Major changes. To be published in Europhysics Letter

    Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity

    Full text link
    We propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-like relation in terms of the variance of the so-called Helfand moment. This quantity, is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. We calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. We show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method.Comment: Submitted to the Journal of Chemical Physic

    Symmetry relations in chemical kinetics arising from microscopic reversibility

    Full text link
    It is shown that the kinetics of time-reversible chemical reactions having the same equilibrium constant but different initial conditions are closely related to one another by a directly measurable symmetry relation analogous to chemical detailed balance. In contrast to detailed balance, however, this relation does not require knowledge of the elementary steps that underlie the reaction, and remains valid in regimes where the concept of rate constants is ill-defined, such as at very short times and in the presence of low activation barriers. Numerical simulations of a model of isomerization in solution are provided to illustrate the symmetry under such conditions, and potential applications in protein folding-unfolding are pointed out.Comment: 4 pages, 1 figure, accepted to Phys Rev Let
    • 

    corecore